Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.396
Filtrar
1.
Wiley Interdiscip Rev RNA ; 15(2): e1849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629193

RESUMO

Small non-coding RNAs are key regulators of gene expression across eukaryotes. Piwi-interacting small RNAs (piRNAs) are a specific type of small non-coding RNAs, conserved across animals, which are best known as regulators of genome stability through their ability to target transposable elements for silencing. Despite the near ubiquitous presence of piRNAs in animal lineages, there are some examples where the piRNA pathway has been lost completely, most dramatically in nematodes where loss has occurred in at least four independent lineages. In this perspective I will provide an evaluation of the presence of piRNAs across animals, explaining how it is known that piRNAs are missing from certain organisms. I will then consider possible explanations for why the piRNA pathway might have been lost and evaluate the evidence in favor of each possible mechanism. While it is still impossible to provide definitive answers, these theories will prompt further investigations into why such a highly conserved pathway can nevertheless become dispensable in certain lineages. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.


Assuntos
Drosophila , RNA de Interação com Piwi , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Interferência de RNA , Drosophila/genética , Eucariotos/metabolismo , Elementos de DNA Transponíveis/genética
2.
Methods Mol Biol ; 2794: 305-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630239

RESUMO

Brain defects often lead to motor dysfunctions in humans. Drosophila melanogaster has been one of the most useful organisms in the study of neuronal biology due to its similarities with humans and has contributed to a more detailed understanding of the effects of genetic dysfunctions in the brain on behavior. We herein present modified protocols for the crawling assay with larvae and the climbing assay with adult flies that are simple to perform as well as a series of commands for ImageJ to automatically analyze data for the crawling assay.


Assuntos
Artrópodes , Drosophila , Adulto , Humanos , Animais , Larva , Drosophila melanogaster , Bioensaio
3.
Proc Natl Acad Sci U S A ; 121(15): e2321338121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568969

RESUMO

To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cromatina/metabolismo , Ritmo Circadiano/genética , Proteínas CLOCK/genética , DNA/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , RNA/metabolismo
4.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612878

RESUMO

We developed a procedure for locating genes on Drosophila melanogaster polytene chromosomes and described three types of chromosome structures (gray bands, black bands, and interbands), which differed markedly in morphological and genetic properties. This was reached through the use of our original methods of molecular and genetic analysis, electron microscopy, and bioinformatics data processing. Analysis of the genome-wide distribution of these properties led us to a bioinformatics model of the Drosophila genome organization, in which the genome was divided into two groups of genes. One was constituted by 65, in which the genome was divided into two groups, 62 genes that are expressed in most cell types during life cycle and perform basic cellular functions (the so-called "housekeeping genes"). The other one was made up of 3162 genes that are expressed only at particular stages of development ("developmental genes"). These two groups of genes are so different that we may state that the genome has two types of genetic organization. Different are the timings of their expression, chromatin packaging levels, the composition of activating and deactivating proteins, the sizes of these genes, the lengths of their introns, the organization of the promoter regions of the genes, the locations of origin recognition complexes (ORCs), and DNA replication timings.


Assuntos
Drosophila , Genes Essenciais , Animais , Drosophila/genética , Drosophila melanogaster/genética , Cromatina , Íntrons
5.
Nat Commun ; 15(1): 2872, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605003

RESUMO

Animals employ different strategies to establish mating boundaries between closely related species, with sex pheromones often playing a crucial role in identifying conspecific mates. Many of these pheromones have carbon-carbon double bonds, making them vulnerable to oxidation by certain atmospheric oxidant pollutants, including ozone. Here, we investigate whether increased ozone compromises species boundaries in drosophilid flies. We show that short-term exposure to increased levels of ozone degrades pheromones of Drosophila melanogaster, D. simulans, D. mauritiana, as well as D. sechellia, and induces hybridization between some of these species. As many of the resulting hybrids are sterile, this could result in local population declines. However, hybridization between D. simulans and D. mauritiana as well as D. simulans and D. sechellia results in fertile hybrids, of which some female hybrids are even more attractive to the males of the parental species. Our experimental findings indicate that ozone pollution could potentially induce breakdown of species boundaries in insects.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Masculino , Feminino , Drosophila melanogaster/genética , Reprodução , Drosophila simulans , Carbono , Feromônios
6.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607032

RESUMO

Coevolution of hosts and their parasites has shaped heterogeneity of effector hemocyte types, providing immune defense reactions with variable effectiveness. In this work, we characterize hemocytes of Drosophila willistoni, a species that has evolved a cellular immune system with extensive variation and a high degree of plasticity. Monoclonal antibodies were raised and used in indirect immunofluorescence experiments to characterize hemocyte subpopulations, follow their functional features and differentiation. Pagocytosis and parasitization assays were used to determine the functional characteristics of hemocyte types. Samples were visualized using confocal and epifluorescence microscopy. We identified a new multinucleated giant hemocyte (MGH) type, which differentiates in the course of the cellular immune response to parasitoids. These cells differentiate in the circulation through nuclear division and cell fusion, and can also be derived from the central hematopoietic organ, the lymph gland. They have a binary function as they take up bacteria by phagocytosis and are involved in the encapsulation and elimination of the parasitoid. Here, we show that, in response to large foreign particles, such as parasitoids, MGHs differentiate, have a binary function and contribute to a highly effective cellular immune response, similar to the foreign body giant cells of vertebrates.


Assuntos
Drosophila , Parasitos , Animais , Diferenciação Celular , Fagocitose , Imunidade Celular
7.
Cells ; 13(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607052

RESUMO

Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein-protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Microscopia de Fluorescência/métodos , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , DNA/metabolismo
8.
Nat Commun ; 15(1): 3198, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609383

RESUMO

In order to shape a tissue, individual cell-based mechanical forces have to be integrated into a global force pattern. Over the last decades, the importance of actomyosin contractile arrays, which are the key constituents of various morphogenetic processes, has been established for many tissues. Recent studies have demonstrated that the microtubule cytoskeleton mediates folding and elongation of the epithelial sheet during Drosophila morphogenesis, placing microtubule mechanics on par with actin-based processes. While these studies establish the importance of both cytoskeletal systems during cell and tissue rearrangements, a mechanistic understanding of their functional hierarchy is currently missing. Here, we dissect the individual roles of these two key generators of mechanical forces during epithelium elongation in the developing Drosophila wing. We show that wing extension, which entails columnar-to-cuboidal cell shape remodeling in a cell-autonomous manner, is driven by anisotropic cell expansion caused by the remodeling of the microtubule cytoskeleton from apico-basal to planarly polarized. Importantly, cell and tissue elongation is not associated with Myosin activity. Instead, Myosin II exhibits a homeostatic role, as actomyosin contraction balances polarized microtubule-based forces to determine the final cell shape. Using a reductionist model, we confirm that pairing microtubule and actomyosin-based forces is sufficient to recapitulate cell elongation and the final cell shape. These results support a hierarchical mechanism whereby microtubule-based forces in some epithelial systems prime actomyosin-generated forces.


Assuntos
Actomiosina , Microtúbulos , Animais , Citoesqueleto de Actina , Citoesqueleto , Drosophila
9.
BMC Biol ; 22(1): 84, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610043

RESUMO

BACKGROUND: Post-translational transport is a vital process which ensures that each protein reaches its site of function. Though most do so via an ordered ER-to-Golgi route, an increasing number of proteins are now shown to bypass this conventional secretory pathway. RESULTS: In the Drosophila olfactory sensory neurons (OSNs), odorant receptors (ORs) are trafficked from the ER towards the cilia. Here, we show that Or22a, a receptor of various esters and alcoholic compounds, reaches the cilia partially through unconventional means. Or22a frequently present as puncta at the somatic cell body exit and within the dendrite prior to the cilia base. These rarely coincide with markers of either the intermediary ER-Golgi-intermediate-compartment (ERGIC) or Golgi structures. ERGIC and Golgi also displayed axonal localization biases, a further indication that at least some measure of OR transport may occur independently of their involvement. Additionally, neither the loss of several COPII genes involved in anterograde trafficking nor ERGIC itself affected puncta formation or Or22a transport to the cilium. Instead, we observed the consistent colocalization of Or22a puncta with Grasp65, the sole Drosophila homolog of mammalian GRASP55/Grh1, a marker of the unconventional pathway. The numbers of both Or22a and Grasp65-positive puncta were furthermore increased upon nutritional starvation, a condition known to enhance Golgi-bypassing secretory activity. CONCLUSIONS: Our results demonstrate an alternative route of Or22a transport, thus expanding the repertoire of unconventional secretion mechanisms in neurons.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Receptores Odorantes/genética , Via Secretória , Drosophila , Cílios , Mamíferos
10.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38606759

RESUMO

Where to lay the eggs is a crucial decision for females as it influences the success of their offspring. Female flies prefer to lay eggs on food already occupied and consumed by larvae, which facilitates social feeding, but potentially could also lead to detrimental interactions between species. Whether females can modulate their attraction to cues associated with different species is unknown. Here, we analyzed the chemical profiles of eggs and larvae of 16 Drosophila species, and tested whether Drosophila flies would be attracted to larvae-treated food or food with eggs from 6 different Drosophila species. The chemical analyses revealed that larval profiles from different species are strongly overlapping, while egg profiles exhibit significant species specificity. Correspondingly, female flies preferred to lay eggs where they detected whatever species' larval cues, while we found a significant oviposition preference only for eggs of some species but not others. Our findings suggest that both larval and egg cues present at a given substrate can drive oviposition preference in female flies.


Assuntos
Drosophila , Oviposição , Animais , Feminino , Larva , Sinais (Psicologia) , Alimentos
11.
Sci Rep ; 14(1): 7799, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565609

RESUMO

It is becoming increasingly evident that the myriad of microbes in the gut, within cells and attached to body parts (or roots of plants), play crucial roles for the host. Although this has been known for decades, recent developments in molecular biology allow for expanded insight into the abundance and function of these microbes. Here we used the vinegar fly, Drosophila melanogaster, to investigate fitness measures across the lifetime of flies fed a suspension of gut microbes harvested from young or old flies, respectively. Our hypothesis was that flies constitutively enriched with a 'Young microbiome' would live longer and be more agile at old age (i.e. have increased healthspan) compared to flies enriched with an 'Old microbiome'. Three major take home messages came out of our study: (1) the gut microbiomes of young and old flies differ markedly; (2) feeding flies with Young and Old microbiomes altered the microbiome of recipient flies and (3) the two different microbial diets did not have any effect on locomotor activity nor lifespan of the recipient flies, contradicting our working hypothesis. Combined, these results provide novel insight into the interplay between hosts and their microbiomes and clearly highlight that the phenotypic effects of gut transplants and probiotics can be complex and unpredictable.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Drosophila , Drosophila melanogaster , Longevidade
12.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38558237

RESUMO

The p24 family of proteins have been regarded as cargo receptors for endoplasmic reticulum (ER) to Golgi transport; however, their precise functions have yet to be revealed. In this issue, Pastor-Pareja and colleagues (https://doi.org/10.1083/jcb.202309045) show that the interaction of these proteins with Tango1 is critical for their localization at the ER exit site (ERES) and efficient transport of secretory proteins in Drosophila.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Drosophila , Retículo Endoplasmático , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
Environ Microbiol ; 26(4): e16609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558489

RESUMO

The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.


Assuntos
Termotolerância , Wolbachia , Animais , Masculino , Drosophila/fisiologia , Drosophila simulans/genética , Wolbachia/genética , Fertilidade
14.
Physiol Rep ; 12(7): e15996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561252

RESUMO

The large conductance, calcium, and voltage-active potassium channels (BKCa) were originally discovered in Drosophila melanogaster as slowpoke (slo). They are extensively characterized in fly models as ion channels for their roles in neurological and muscular function, as well as aging. BKCa is known to modulate cardiac rhythm and is localized to the mitochondria. Activation of mitochondrial BKCa causes cardioprotection from ischemia-reperfusion injury, possibly via modulating mitochondrial function in adult animal models. However, the role of BKCa in cardiac function is not well-characterized, partially due to its localization to the plasma membrane as well as intracellular membranes and the wide array of cells present in mammalian hearts. Here we demonstrate for the first time a direct role for BKCa in cardiac function and cardioprotection from IR injury using the Drosophila model system. We have also discovered that the BKCa channel plays a role in the functioning of aging hearts. Our study establishes the presence of BKCa in the fly heart and ascertains its role in aging heart function.


Assuntos
Drosophila melanogaster , Drosophila , Ratos , Animais , Ratos Sprague-Dawley , Coração , Mitocôndrias , Mamíferos
15.
Nucleus ; 15(1): 2339214, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38597409

RESUMO

The nuclear lamina (NL) changes composition for regulation of nuclear events. We investigated changes that occur in Drosophila oogenesis, revealing switches in NL composition during germ cell differentiation. Germline stem cells (GSCs) express only LamB and predominantly emerin, whereas differentiating nurse cells predominantly express LamC and emerin2. A change in LamC-specific localization also occurs, wherein phosphorylated LamC redistributes to the nuclear interior only in the oocyte, prior to transcriptional reactivation of the meiotic genome. These changes support existing concepts that LamC promotes differentiation, a premise that was tested. Remarkably ectopic LamC production in GSCs did not promote premature differentiation. Increased LamC levels in differentiating germ cells altered internal nuclear structure, increased RNA production, and reduced female fertility due to defects in eggshell formation. These studies suggest differences between Drosophila lamins are regulatory, not functional, and reveal an unexpected robustness to level changes of a major scaffolding component of the NL.


Assuntos
Proteínas de Drosophila , Lâmina Nuclear , Animais , Feminino , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Drosophila , Diferenciação Celular , Células Germinativas
16.
Elife ; 122024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587455

RESUMO

The color pattern of insects is one of the most diverse adaptive evolutionary phenotypes. However, the molecular regulation of this color pattern is not fully understood. In this study, we found that the transcription factor Bm-mamo is responsible for black dilute (bd) allele mutations in the silkworm. Bm-mamo belongs to the BTB zinc finger family and is orthologous to mamo in Drosophila melanogaster. This gene has a conserved function in gamete production in Drosophila and silkworms and has evolved a pleiotropic function in the regulation of color patterns in caterpillars. Using RNAi and clustered regularly interspaced short palindromic repeats (CRISPR) technology, we showed that Bm-mamo is a repressor of dark melanin patterns in the larval epidermis. Using in vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also showed that Bm-mamo likely regulates the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with the dual role of this transcription factor in regulating both the structure and shape of the cuticle and the pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as into the construction of more complex epidermal features in some insects.


Assuntos
Bombyx , Lepidópteros , Animais , Bombyx/genética , Drosophila melanogaster/genética , Pigmentação/genética , Drosophila , Larva/genética , Fatores de Transcrição/genética
17.
Zoolog Sci ; 41(2): 230-243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587918

RESUMO

The insulin/insulin-like growth factor-like signaling (IIS) pathway is highly conserved across metazoans and regulates numerous physiological functions, including development, metabolism, fecundity, and lifespan. The insulin receptor (InR), a crucial membrane receptor in the IIS pathway, is known to be ubiquitously expressed in various tissues, albeit at generally low levels, and its subcellular localization remains incompletely characterized. In this study, we employed CRISPR-mediated mutagenesis in the fruit fly Drosophila to create knock-in alleles of InR tagged with fluorescent proteins (InR::mCherry or InR::EYFP). By inserting the coding sequence of the fluorescent proteins mCherry or EYFP near the end of the coding sequence of the endogenous InR gene, we could trace the natural InR protein through their fluorescence. As an example, we investigated epithelial cells of the male accessory gland (AG), an internal reproductive organ, and identified two distinct patterns of InR::mCherry localization. In young AG, InR::mCherry accumulated on the basal plasma membrane between cells, whereas in mature AG, it exhibited intracellular localization as multiple puncta, indicating endocytic recycling of InR during cell growth. In the AG senescence accelerated by the mutation of Diuretic hormone 31 (Dh31), the presence of InR::mCherry puncta was more pronounced compared to the wild type. These findings raise expectations for the utility of the newly created InR::mCherry/EYFP alleles for studying the precise expression levels and subcellular localization of InR. Furthermore, this fluorescently tagged allele approach can be extended to investigate other membrane receptors with low abundance, facilitating the direct examination of their true expression and localization.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Masculino , Animais , Drosophila melanogaster/fisiologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Alelos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila
18.
Zoolog Sci ; 41(1): 4-13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587512

RESUMO

The past few decades have witnessed increasing research clarifying the role of endocrine signaling in the regulation of aging in both vertebrates and invertebrates. Studies using the model organism fruit fly Drosophila melanogaster have largely advanced our understanding of evolutionarily conserved mechanisms in the endocrinology of aging and anti-aging. Mutations in single genes involved in endocrine signaling modify lifespan, as do alterations of endocrine signaling in a tissue- or cell-specific manner, highlighting a central role of endocrine signaling in coordinating the crosstalk between tissues and cells to determine the pace of aging. Here, we review the current landscape of research in D. melanogaster that offers valuable insights into the endocrine-governed mechanisms which influence lifespan and age-related physiology.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Envelhecimento , Longevidade , Mutação
19.
Nat Commun ; 15(1): 3000, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589403

RESUMO

Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.


Assuntos
Actomiosina , Proteínas de Drosophila , Animais , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo , Epitélio/metabolismo , Morfogênese
20.
PLoS One ; 19(4): e0293252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593121

RESUMO

Motor and cognitive aging can severely affect life quality of elderly people and burden health care systems. In search for diagnostic behavioral biomarkers, it has been suggested that walking speed can predict forms of cognitive decline, but in humans, it remains challenging to separate the effects of biological aging and lifestyle. We examined a possible association of motor and cognitive decline in Drosophila, a genetic model organism of healthy aging. Long term courtship memory is present in young male flies but absent already during mid life (4-8 weeks). By contrast, courtship learning index and short term memory (STM) are surprisingly robust and remain stable through mid (4-8 weeks) and healthy late life (>8 weeks), until courtship performance collapses suddenly at ~4.5 days prior to death. By contrast, climbing speed declines gradually during late life (>8 weeks). The collapse of courtship performance and short term memory close to the end of life occur later and progress with a different time course than the gradual late life decline in climbing speed. Thus, during healthy aging in male Drosophila, climbing and courtship motor behaviors decline differentially. Moreover, cognitive and motor performances decline at different time courses. Differential behavioral decline during aging may indicate different underlying causes, or alternatively, a common cause but different thresholds for defects in different behaviors.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Masculino , Humanos , Idoso , Drosophila melanogaster/genética , Corte , Instinto , Drosophila/genética , Envelhecimento/psicologia , Proteínas de Drosophila/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...